44 research outputs found

    MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    Get PDF
    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease

    Get PDF
    BACKGROUND: Acute graft-versus-host disease (GVHD) remains a major limitation of allogeneic stem-cell transplantation; not all patients have a response to standard glucocorticoid treatment. In a phase 2 trial, ruxolitinib, a selective Janus kinase (JAK1 and JAK2) inhibitor, showed potential efficacy in patients with glucocorticoid-refractory acute GVHD. METHODS: We conducted a multicenter, randomized, open-label, phase 3 trial comparing the efficacy and safety of oral ruxolitinib (10 mg twice daily) with the investigator's choice of therapy from a list of nine commonly used options (control) in patients 12 years of age or older who had glucocorticoid-refractory acute GVHD after allogeneic stem-cell transplantation. The primary end point was overall response (complete response or partial response) at day 28. The key secondary end point was durable overall response at day 56. RESULTS: A total of 309 patients underwent randomization; 154 patients were assigned to the ruxolitinib group and 155 to the control group. Overall response at day 28 was higher in the ruxolitinib group than in the control group (62% [96 patients] vs. 39% [61]; odds ratio, 2.64; 95% confidence interval [CI], 1.65 to 4.22; P<0.001). Durable overall response at day 56 was higher in the ruxolitinib group than in the control group (40% [61 patients] vs. 22% [34]; odds ratio, 2.38; 95% CI, 1.43 to 3.94; P<0.001). The estimated cumulative incidence of loss of response at 6 months was 10% in the ruxolitinib group and 39% in the control group. The median failure-free survival was considerably longer with ruxolitinib than with control (5.0 months vs. 1.0 month; hazard ratio for relapse or progression of hematologic disease, non-relapse-related death, or addition of new systemic therapy for acute GVHD, 0.46; 95% CI, 0.35 to 0.60). The median overall survival was 11.1 months in the ruxolitinib group and 6.5 months in the control group (hazard ratio for death, 0.83; 95% CI, 0.60 to 1.15). The most common adverse events up to day 28 were thrombocytopenia (in 50 of 152 patients [33%] in the ruxolitinib group and 27 of 150 [18%] in the control group), anemia (in 46 [30%] and 42 [28%], respectively), and cytomegalovirus infection (in 39 [26%] and 31 [21%]). CONCLUSIONS: Ruxolitinib therapy led to significant improvements in efficacy outcomes, with a higher incidence of thrombocytopenia, the most frequent toxic effect, than that observed with control therapy

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Cryptococcus neoformans Escape From Dictyostelium Amoeba by Both WASH-Mediated Constitutive Exocytosis and Vomocytosis

    No full text
    Cryptococcus neoformans is an environmental yeast that can cause opportunistic infections in humans. As infecting animals does not form part of its normal life-cycle, it has been proposed that the virulence traits that allow cryptococci to resist immune cells were selected through interactions with environmental phagocytes such as amoebae. Here, we investigate the interactions between C. neoformans and the social amoeba Dictyostelium discoideum. We show that like macrophages, D. discoideum is unable to kill C. neoformans upon phagocytosis. Despite this, we find that the yeast pass through the amoebae with an apparently normal phagocytic transit and are released alive by constitutive exocytosis after ~80 min. This is the canonical pathway in amoebae, used to dispose of indigestible material after nutrient extraction. Surprisingly however, we show that upon either genetic or pharmacological blockage of constitutive exocytosis, C. neoformans still escape from D. discoideum by a secondary mechanism. We demonstrate that constitutive exocytosis-independent egress is stochastic and actin-independent. This strongly resembles the non-lytic release of cryptococci by vomocytosis from macrophages, which do not perform constitutive exocytosis and normally retain phagocytosed material. Our data indicate that vomocytosis is functionally redundant for escape from amoebae, which thus may not be the primary driver for its evolutionary selection. Nonetheless, we show that vomocytosis of C. neoformans is mechanistically conserved in hosts ranging from amoebae to man, providing new avenues to understand this poorly-understood but important virulence mechanism

    Net landscape carbon balance of a tropical savanna: relative importance of fire and aquatic export in offsetting terrestrial production

    No full text
    The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet–dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣF). Here, we determined the NLCB of a lowland catchment (~140\ua0km) in tropical Australia over 2\ua0years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣF (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334\ua0Mg\ua0C\ua0km\ua0year), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (−56\ua0Mg\ua0C\ua0km\ua0year) and ΣF (−28\ua0Mg\ua0C\ua0km\ua0year) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣF significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events—up to 39% of annual ΣF was exported in one event. We hypothesize that wetter and hotter conditions in the wet–dry tropics in the future will increase ΣF and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet–dry tropics where our result indicating a significant C sink may not hold
    corecore